
1
1

SC2000

Achieving Performance on the Grid

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

Brian L. Tierney
Dan Gunter

SC2000

Outline

• Intro
– Why performance analysis is critical for Grid applications

• Monitoring/instrumentation techniques

– what to monitor
• Analysis Tools

– NetLogger
• Techniques to optimize application performance in a WAN

environment
– TCP tuning techniques

• pipechar tool

– program design considerations
– async I/O, etc.

• NetLogger Demo

2
2

SC2000

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

SC2000

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

3
3

SC2000

Monitoring

• Monitoring of Applications and Resources is essential
in a Grid Environment

• Monitoring Data is needed for:
– performance analysis
– performance tuning
– debugging

• Also for Advanced Grid Services
– prediction systems (e.g.: NWS)
– Grid schedulers
– accounting
– service verification (e.g.: QoS)

SC2000

What to Monitor?

? hosts: report host stats; e.g.: CPU load, available memory, TCP
retransmits
? could be layered on top of SNMP-based tools, running remotely

from the host being monitored
? could also be used to monitor host configuration information,

?OS version, software package version, total memory, etc.
? networks: perform SNMP queries to a network device

? e.g.:router or switch.
? processes: generate events when there is a change in process

status
? e.g.: process starts, dies normally, dies abnormally

? storage or I/O: report storage systems usage of disks or tapes
? information on block size, access time, seek time, etc.

4
4

SC2000

What to Monitor? (cont.)

?middleware: information about middleware services
such as directory and authentication servers

? applications: sensors can also be embedded inside
of applications.
?generate events if a static threshold is reached (for

example, if the number of locks taken exceeds a
threshold),

?upon user connect/disconnect, upon receipt of a
UNIX signal, etc.

?Application sensors can also be used to collect
detailed monitoring data about the application to be
used for performance analysis.

SC2000

Network-aware Applications

• To optimally operate over Wide-Area networks, Grid
applications must be able to easily adapt to changing
network conditions.
– Must monitor the network (or use a monitoring

service)
– must use that information to:

• set TCP buffer size
• set number of parallel streams
• etc.

– Much more on this later

5
5

SC2000

The NetLogger Toolkit

SC2000

NetLogger Toolkit

• We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

– tools to make it easy for distributed applications to log
interesting events at every critical point

– tools for host and network monitoring

• The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system.

• This has proven invaluable for:

– isolating and correcting performance bottlenecks

– debugging distributed applications

6
6

SC2000

NetLogger Components

• NetLogger Toolkit contains the following components:
– NetLogger message format
– NetLogger client library (C, C++, Java, Perl, Python)
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger/

• Additional critical component for distributed applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems

SC2000

Key Concepts

• NetLogger visualization tools are based on time
correlated and/or object correlated events.

• NetLogger client libraries include:
– precision timestamps (default = microsecond)
– ability for applications to specify an “object ID” for related

events, which allows the NetLogger visualization tools to
generate an object “lifeline”

7
7

SC2000

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)

• followed by optional user defined fields
• http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

• NetLogger adds this required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

SC2000

NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

8
8

SC2000

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on distributed

applications
– determine which hardware components to upgrade

to alleviate bottlenecks
– do real-time or post-mortem analysis of applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow a

specific item (data block, message, object) through the
system

SC2000

When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events that

take > .5 ms
– e.g: probably don’t want to use to instrument the

UNIX kernel

9
9

SC2000

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

SC2000

netlogd

• Use netlogd to collect NetLogger messages at a central
host
– use to avoid the need to sort/merge several log files

from several places

netlogd
Network 1

Network 2
Network 3

NetLogger data

10
10

SC2000

Logging to Memory

• The NetLogger client library includes an option to buffer log
messages in memory:
– useful if monitoring bursts of events with a duration < 1 ms

• Flushing of events to disk or network will occur:
– automatically when specified memory block full
– when calling NetLoggerFlush()
– when calling NetLoggerClose()

• Size of memory buffer specified by NL_MAX_BUFFER in
netlogger.h
– default = 10,000 messages (typical message size is 128

bytes)

SC2000

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

11
11

SC2000

NetLogger Open Call

NLhandle *lp = NULL;
lp = NetLoggerOpen(char *program_name, char *dest_url, int flags);

• program_name: name to be inserted into ULM “program” field
• dest_url: destination of log file; valid URLs formats include:

– file://path/file
– x-netlog://host:port
– x-syslog://localhost

• flags: bitwise “or” of the following:
– NL_MEM: buffer in memory
– NL_ENV: destination must be specified by the NL_DEST_ENV

environment variable; NetLogger is off if this variable not found
– NL_APPEND: append to existing log file

SC2000

NetLoggerOpen() shell
environment variables

• Enable/Disable logging:
setenv NETLOGGER_ON {true, on, yes, 1}: do logging
setenv NETLOGGER_ON {false, off, no, 0}: do not do logging

• Log Destination: setenv NL_DEST_ENV logging destination
 Examples:
 setenv NL_DEST_ENV file://tmp/netlog.log

 write log messages to file /tmp/netlog.log
 setenv NL_DEST_ENV x-netlog://loghost.lbl.gov

 send log messages to netlogd on host loghost.lbl.gov, default port
 setenv NL_DEST_ENV x-netlog://loghost.lbl.gov:6006
 send log messages to netlogd on host loghost.lbl.gov, port 6006

• NL_DEST_ENV overrides the URL passed in via the NetLoggerOpen()

call.

12
12

SC2000

Typical Use

• Using the environment variables, application and middleware
developers don’t have to worry about command line arguments
or middleware APIs to enable/disable logging.

• Example: middleware includes the following call:
NetLoggerOpen(“globus”, NULL, NL_ENV);
– Default behavior: logging is off
– If user sets “NL_DEST_ENV” to a valid log destination, then logging

will be turned on

• Example: client includes the following call:
NetLoggerOpen(“my_app”, “file://tmp/myapp.log”, 0);
– Default behavior: logging is on

– If user sets: NETLOGGER_ON = off: Logging is disabled

SC2000

NetLogger Write Call

• Creates and Writes the log event:

NetLoggerWrite(nl, “EVENT_NAME”,
“EVENTID=%d F2=%d F3=%s F4=%.2f”, id,
user_data, user_string, user_float);

– timestamps are automatically done by library

– the “event name” field is required, all other fields are
optional

– this call is thread-safe: automatically does a mutex lock
around write call (compile time option)

• Example:

NetLoggerWrite(nl, “HTTPD.START_DISK_READ”,
“HTTPD.FNAME=%s HTTPD.HOST=%s”, fname,
hostname);

13
13

SC2000

Sample NetLogger Use

 lp = NetLoggerOpen(progname,
x-netlog://loghost.lbl.gov, 0);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

SC2000

NetLogger Event “Life Lines”

14
14

SC2000

Event ID

• In order to associate a group of events into a “lifeline”,
you must assign an event ID to each NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– combination of the above
– etc.

SC2000

Sample NetLogger Use with
Event IDs

lp = NetLoggerOpen(progname, NULL, NL_ENV);
for (i=0; i< num_blocks; i++) {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);

15
15

SC2000

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, available memory, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

SC2000

Sample NetLogger System
Monitoring Tool

• Example: nl_vmstat -t 60 -d 5000 -m 2 logger.lbl.gov
– Perl program will exec vmstat every 5 seconds for 1

hour, and send the results to netlogd on host
logger.lbl.gov

– Generates the following information:
• CPU usage by User
• CPU usage by System

• NetLogger Messages:
DATE=19990706125055.891620 HOST=portnoy.lbl.gov

PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_USER_TIME
VMS.VAL=9

DATE=19990706125055. 891112 HOST=portnoy.lbl.gov
PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_SYS_TIME
VMS.VAL=5

16
16

SC2000

NetLoggerized tcpdump

• Precise real-time monitoring of TCP events on a per stream bases
– TCP retransmits
– TCP window size

• Example:
– tcpdump -A tcp and host piggy.ittc.ukans.edu and port 23

• Generates the following NetLogger data:
– DATE=20000419171039.78654 HOST=piggy.ittc.ukans.edu PROG=tcpdump

LVL=ErrorNL.EVNT=TCPD_REXSEG SN=145
SRC_HOST=falcon.cc.ukans.edu SRC_PORT=23
DST_HOST=piggy.ittc.ukans.edu DST_PORT=2800

• http://www.ittc.ukans.edu/projects/enable/tcpdump

SC2000

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at once
– user configurable: which events to plot, and the type of

plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and so

on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it is
being written

17
17

SC2000

NLV Graph Types

• nlv supports graphing of “points”, load-lines, and
lifelines

SC2000

NLV Screenshot

Menu bar

Scale for load-line/
pointsEvents

Legend

Zoom window
controls

Zoom box

Playback controls

Window size
Max window size

Zoom-box actions

Playback speed

Summary
line

Time axis

You are
here

Title

18
18

SC2000

NLV Configuration

• NLV is very flexible, with many options settable in the
configuration file.

• Format:
eventset +/-eventset_name {
 { type <line,point,load> }
 { id { list of ULM field names used to determine which
NetLogger messages get grouped into the same graph
primitive } }

 { group { list of ULM field names which will be mapped to
the same color } }

 { val field_name min_val max_val }
 { annotate { list of field names to display in with annotate
option } }

 { events { list of all event ID’s in this lifeline } }
}

• Each nlv graph object needs to be defined by an “eventset”
• Events and event-sets both use "+" and "-" to indicate default

(i.e. on startup) visibility

SC2000

Example NLV Configuration

display vmstat info as a “loadline”
eventset +VMSTAT {
{ type load }
loadline constructed from messages with the same HOST and NL.EVNT
{ id { HOST NL.EVNT } }
messages with the same HOST get the same color
{ group HOST }
#list of NL.EVNT values in this set_
{ events { +VMSTAT_SYS_TIME +VMSTAT_USER_TIME } }
}

display netstat TCP retransmits as a “point”
eventset +NETSTAT {
{ type point }
ignore values outside the range 0 to 999
{ val NS.VAL 0.0 999.0 }
point constructed from messages from the same HOST and PROG
{ id { HOST PROG } }
messages with the same HOST get the same color
{ group HOST }
{ events { +NETSTAT_RETRANSSEGS } }
}

19
19

SC2000

Example NLV Configuration

display server data as a “lifeline”
eventset +SERVER_READ {
{ type line }

lifeline constructed from messages from the same client
and server

{ id { CLIENT_HOST DPSS.SERV } }

messages with the same DPSS.SERV get the same color
{ group DPSS.SERV }

{ events {
+APP_SENT
+DPSS_SERV_IN
+DPSS_START_READ
+DPSS_END_READ
+DPSS_START_WRITE
+APP_RECEIVE }

}
}

SC2000

How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck

20
20

SC2000

Does NetLogger affect
application performance?

• Only if you use it incorrectly, or log too much
• There are several things to be careful of when doing this

type of monitoring:
– If logging to disk, don’t log to a nfs mounted disk

• best to log to /tmp, which may actually be RAM (Solaris)

– Probably don’t want to send log messages to a slow
(i.e.: 10BT) or congested network, as you’ll just make
it worse

• log to a local file instead

SC2000

NetLogger Case Studies

21
21

SC2000

Example: HPSS Storage Manager
Application

• NetLogger was used to test and verify the results of a
Storage Access Coordination System (STACS) by
LBNL’s Data Management Group

• STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and tries
to minimize tape mount requests by clustering related
data on the same tape

• NetLogger was used to look at:
– per-query latencies
– to show that subsequent fetches of spatially

clustered data "hit" in the cache.
• (http://gizmo.lbl.gov/sm/)

SC2000

STACS Instrumentation Points

Client

Cache HPSS
Tape Storage

Monitoring Points:
A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client
E) file retrieved by client
F) file released by client

22
22

SC2000

NLV for STACS: Tracking File
Requests

SC2000

Tracking Files and System Performance

23
23

SC2000

Example: Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—70 MB/sec (DPSS) vs 22 MB/sec (local disk)

• Only need to send parts of the file currently required over
the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model

• NetLogger was used for performance tuning and
debugging of the DPSS

SC2000

DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

? logical to physical
block lookup

? access control
? load balancing

Physical Block
Requests

24
24

SC2000

NetLogger Results for the DPSS

SC2000

NetLogger Results for the DPSS

25
25

SC2000

NetLogger Results for the DPSS
over a WAN

SC2000

DPSS Performance: Used NetLogger
for performance tuning

Storage Cluster
(DPSS)

Total Throughput (single dataset to a single cluster application):
570 Mbits/sec (71 MB/sec) on 32 data streams (17 Mbits/sec/stream)

Compute Cluster
(8 nodes)

Berkeley Lab:
.75 TB, 4 server

DPSS
Sandia Livermore Lab

 Linux Cluster (CPlant)

NTON Oakland
POP

OC-48OC-12

1000 BT1000 BT

26
26

SC2000

Example: NLV of DPSS with a
HENP client

SC2000

Example: Babar data analysis: 2
nodes with Objectivity Error

27
27

SC2000

Example: Matisse Project

SC2000

Example: Combined Host and
Application Monitoring

 VMSTAT_FREE_MEMORY

 VMSTAT_SYS_TIME

 VMSTAT_USER_TIME

MPLAY_START_READ_FRAME

MPLAY_END_READ_FRAME

MPLAY_START_PUT_IMAGE

MPLAY_END_PUT_IMAGE

TCPD_RETRANSMITS

310 311 312 313 314 315 316 317 318

dpss5.lbl.gov
dpss4.lbl.gov

dpss2.lbl.govmems.cairn.net
dpss3.lbl.gov

X

X

X

X

Time (seconds)

28
28

SC2000

Example: NetLogger of ncftp
client

• ncftp client on a
10BT ethernet

• ncftp client on a
1000BT ethernet

SC2000

Current/Future NetLogger Work

• Binary format (faster!)
• XML format (slower!!)
• Publish/Subscribe API

– Producer X
• NetLoggerPublish(“MONITORING_EVENT_NAME”, ...)

– Consumer Y
• NetLoggerSubscribe(X, “MONITORING_EVENT_NAME”, ..)

29
29

SC2000

 Getting NetLogger

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger

• Client libraries run on all Unix platforms

• Solaris, Linux, and Irix versions of nlv are currently
supported

SC2000

Part 2:
Network and TCP Performance

Issues

30
30

SC2000

How TCP works:
A very short overview

• Congestion window (cwnd)
– The Larger the window size, higher the throughput

• Throughput = Window size /Round- trip Time
• Slow start

– exponentially increase the congestion window size until a
packet is lost

• this gets a rough estimate of the optimal congestion
window size

• Congestion avoidance
– additive increase: starting from the rough estimate, linearly

increase the congestion window size to probe for additional
available bandwidth

– multiplicative decrease: cut congestion window size
aggressively if a timeout occurs

SC2000

TCP Overview

• Fast Retransmit: retransmit after 3 duplicated acks (got 3
additional packets without getting the one you are waiting for)
– this prevents expensive timeouts
– no need to slow start again

• At steady state, cwnd oscillates around the optimal window size
• With a retransmission timeout, slow start is triggered again

CWND

slow start:
exponential

increase
congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

31
31

SC2000

TCP Performance Tuning Issues

• Getting good TCP performance over high-latency high-
bandwidth networks is hard!

• You must keep the pipe full, and the size of the pipe is
directly related to the network latency
– Example: from LBNL to ANL, there is an OC12 network,

and the one-way latency is 25ms
• Bandwidth = 67 MB/sec (OC12 - ATM / IP headers = 539 Mb/s)

– Need 67 Mbytes * .025 sec = 1.7 MB of data “in flight” to
fill the pipe

SC2000

Setting the TCP buffer sizes

• It is critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.
– if too small, the TCP window will never fully open up
– if too large, the sender can overrun the receiver, and

the TCP window will shut down
• Default TCP buffer sizes are way too small for this type

of network
– default TCP send/receive buffers are typically 24 or

32 KB

– with 24 KB buffers, can get only 2.2% of the
available bandwidth!

32
32

SC2000

Importance of TCP Tuning

LAN (rtt = 1ms)

WAN (rtt = 50ms)

Tuned for
LAN

Tuned for
WAN

Tuned for
Both

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

100

200

300

64KB TCP
Buffers

512 KB TCP
Buffers

264

44

152

112

264

112

SC2000

TCP Buffer Tuning

• Must adjust buffer size in your applications:
 int skt, int sndsize;
 err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF,
 (char *)&sndsize,(int)sizeof(sndsize));

and/or
 err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF,
 (char *)&sndsize,(int)sizeof(sndsize));

• Also need to adjust system max and default buffer
– Example: in Linux, add to /etc/rc.d/rc.local

echo 8388608 > /proc/sys/net/core/wmem_max
 echo 8388608 > /proc/sys/net/core/rmem_max
 echo 65536 > /proc/sys/net/core/rmem_default
 echo 65536 > /proc/sys/net/core/wmem_default

• For More Info, see: http://www-didc.lbl.gov/tcp-wan.html

33
33

SC2000

Determining the Buffer Size

• The optimal buffer size is twice the bandwidth*delay
product of the link:

buffer size = 2 * bandwidth * delay
• The ping program can be used to get the delay

– e.g.: portnoy.lbl.gov(60)>ping -s lxplus.cern.ch 8192
64 bytes from lxplus012.cern.ch: icmp_seq=0. time=175. ms
64 bytes from lxplus012.cern.ch: icmp_seq=1. time=176. ms
64 bytes from lxplus012.cern.ch: icmp_seq=2. time=175. ms

• pipechar or pchar can be used to get the bandwidth of the
slowest hop in your path. (see next slides)

• Since ping gives the round trip time (RTT), this formula
can be used instead of the previous one:

buffer size = bandwidth * RTT

SC2000

Buffer Size Example

• ping time = 50 ms
• slowest network segment = 10 Mbytes/sec (e.g.: the

end-to-end network consists of all 100 BT ethernet
and OC3 (155 Mbps)

• TCP buffers should be:
– .05 sec * 10 = 500 KBytes.

• Remember: default buffer size is usually only 24KB,
and default maximum buffer size is only 256KB !

34
34

SC2000

pchar

• pchar is a reimplementation of the pathchar utility,
written by Van Jacobson.
– http://www.employees.org/~bmah/Software/pchar/
– attempts to characterize the bandwidth, latency,

and loss of links along an end-to-end path
• How it works:

– sends UDP packets of varying sizes and analyzes
ICMP messages produced by intermediate routers
along the path

– estimate the bandwidth and fixed round-trip delay
along the path by measuring the response time for
packets of different sizes

SC2000

pchar details

• How it works (cont.)
– vary the TTL of the outgoing packets to get responses

from different intermediate routers.
• At each hop, pchar sends a number of packets of varying sizes

– attempt to isolate jitter caused by network queuing:
• determine the minimum response times for each packet size
• performs a simple linear regression fit to the minimum response

times.
• This fit yields the partial path bandwidth and round-trip time

estimates.

– To yield per-hop estimates, pchar computes the
differences in the linear regression parameter estimates
for two adjacent partial-path datasets

35
35

SC2000

Sample pchar output

pchar to webr.cern.ch (137.138.28.228) using UDP/IPv4
Packet size increments by 32 to 1500
46 test(s) per repetition
32 repetition(s) per hop
 0: 131.243.2.11 (portnoy.lbl.gov)
 Partial loss: 0 / 1472 (0%)
 Partial char: rtt = 0.390510 ms, (b = 0.000262 ms/B), r2 = 0.992548
 stddev rtt = 0.002576, stddev b = 0.000003
 Partial queueing: avg = 0.000497 ms (1895 bytes)
 Hop char: rtt = 0.390510 ms, bw = 30505.978409 Kbps
 Hop queueing: avg = 0.000497 ms (1895 bytes)
 1: 131.243.2.1 (ir100gw-r2.lbl.gov)

Hop char: rtt = -0.157759 ms, bw = -94125.756786 Kbps
 2: 198.129.224.2 (lbl2-gig-e.es.net)
 Hop char: rtt = 53.943626 ms, bw = 70646.380067 Kbps
 3: 134.55.24.17 (chicago1-atms.es.net)
 Hop char: rtt = 1.125858 ms, bw = 27669.357365 Kbps
 4: 206.220.243.32 (206.220.243.32)
 Hop char: rtt = 109.612913 ms, bw = 35629.715463 Kbps

SC2000

pchar output continued

5: 192.65.184.142 (cernh9-s5-0.cern.ch)
 Hop char: rtt = 0.633159 ms, bw = 27473.955920 Kbps
6: 192.65.185.1 (cgate2.cern.ch)
 Hop char: rtt = 0.273438 ms, bw = -137328.878155 Kbps
7: 192.65.184.65 (cgate1-dmz.cern.ch)
 Hop char: rtt = 0.002128 ms, bw = 32741.556372 Kbps
8: 128.141.211.1 (b513-b-rca86-1-gb0.cern.ch)
 Hop char: rtt = 0.113194 ms, bw = 79956.853379 Kbps
9: 194.12.131.6 (b513-c-rca86-1-bb1.cern.ch)
 Hop char: rtt = 0.004458 ms, bw = 29368.349559 Kbps
10: 137.138.28.228 (webr.cern.ch)
 Path length: 10 hops
 Path char: rtt = 165.941525 ms, r2 = 0.983821
 Path bottleneck: 27473.955920 Kbps
 Path pipe: 569883 bytes
 Path queueing: average = 0.002963 ms (55939 bytes)

36
36

SC2000

pipechar

• Problems with pchar:
– takes a LONG time to run (typically 1 hour for an 8

hop path)
– often reports inaccurate results on high-speed (

e.g.: > OC3) links.

• New tool called pipechar
– http://www-didc.lbl.gov/pipechar/
– solves the problems with pchar, but only reports the

bottleneck link accurately
• all data beyond the bottleneck hop will not be accurate

– only takes about 2 minutes to analyze an 8 hop path

SC2000

pipechar

• Like pchar, pipechar uses UDP/ICMP packets of
varying sizes and TTL’s.

• Differences:
– uses the jitter (caused by router queuing)

measurement to estimate the bandwidth utilization
– uses a synchronization mechanism to isolate

“noise” and eliminate the need to find minimum
response times

• requires fewer tests than pchar/pathchar

– performs multiple linear regressions on the results

37
37

SC2000

Sample pipechar output
>pipechar pdrd10.cern.ch
From localhost: 156.522 Mbps (157.6028 Mbps)
1: ir100gw-r2.lbl.gov (131.243.2.1)
| 157.295 Mbps <4.9587% BW used>
2: lbl2-gig-e.es.net (198.129.224.2)
| 159.364 Mbps <21.5560% BW used>
3: chicago1-atms.es.net (134.55.24.17)
| 45.715 Mbps <1.6378% BW used>
4: (206.220.243.32)
| 46.895 Mbps <1.6378% BW used>
5: cernh9-s5-0.cern.ch (192.65.184.142)
| 46.330 Mbps <5.9290% BW used>
6: cgate2.cern.ch (192.65.185.1)
| 45.348 Mbps <10.6760% BW used>
7: cgate1-dmz.cern.ch (192.65.184.65)
| 46.041 Mbps <10.1195% BW used>
8: b513-b-rca86-1-gb0.cern.ch (128.141.211.1)
| 45.411 Mbps !!! <23.0134% BW used>
9: b513-c-rca86-1-bb1.cern.ch (194.12.131.6)
| 46.911 Mbps <9.3956% BW used>
10: r31-s-rca20-1-gb7.cern.ch (194.12.129.98)
| 9.954 Mbps *** static bottle-neck 10BT
11: pcrd10.cern.ch (137.138.29.237)

SC2000

Other Tools

• iperf : tool for measuring end-to-end TCP/UDP performance
– http://dast.nlanr.net/Projects/Iperf/

• traceroute: lists all routers from current host to remote host
– ftp://ftp.ee.lbl.gov/

• tcpdump: dump all TCP header information for a specified
source/destination
– ftp://ftp.ee.lbl.gov/

38
38

SC2000

tcptrace

• tcptrace: format tcpdump output for analysis using xplot
– http://jarok.cs.ohiou.edu/software/tcptrace/
– NLANR TCP Testrig : Nice wrapper for tcpdump and

tcptrace tools
• http://www.ncne.nlanr.net/TCP/testrig/

• Sample use:
 tcpdump -s 100 -w /tmp/tcpdump.out host hostname
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

SC2000

tcptrace and xplot

• X axis is time
• Y axis is sequence number

– Data packets are indicated with double arrows

– Window and Acknowledgement numbers as staircases
• Huge range of important scales

39
39

SC2000

SC2000

Other Tools

• NLANR Tools Repository:
– Lots more network analysis tools
– http://www.ncne.nlanr.net/tools/

40
40

SC2000

Advantage of Parallel Transfers

graph from Davide Salomoni , SLAC

SC2000

TCP WAN Performance: Host
Issues

Network Performance

0

50
100
150

200
250

300
350
400

Solaris / Linux 100BT
Solaris 1000BT
Linux 1000B

T

Solaris 100B
T

Solaris 1000B
T

Solaris 100B
T

Linux 100B
T

Solaris 1000BT
Linux 1000B

T
Intel Linux Syskonnect
Alpha Linux Syskonnect

receive host

th
ro

u
g

h
p

u
t

(M
b

its
/s

ec
)

1 stream
2 streams
4 streams
6 streams

 LAN WAN (65 ms RTT)
64KB buffers 64 KB buffers 4 MB Buffers

41
41

SC2000

Things to Notice in Previous
Slide

• Parallel Streams help a lot with un-tuned TCP buffers
– and help a little with large buffers on Solaris

• Problems sending from a 1000BT host to a 100BT
Linux host

• Problems sending multiple streams to a 1000BT Linux
system, especially with cheap 1000BT hardware

SC2000

Other TCP Issues

• Things to be aware of:
– TCP slow-start

• On the LBL to ANL link, it takes 12 RTT’s to ramp up to full
window size, so need to send about 10 MB of data before
the TCP congestion window will fully open up.

– router buffer issues
– host issues

42
42

SC2000

TCP Slow Start

SC2000

Problems with TCP over NGI-like
Networks

43
43

SC2000

TCP Throughput on DARPA
SuperNet

SC2000

Another Network Performance
Issue: Full vs. Half duplex

• A common source of LAN trouble with 100BT networks is
that the host is set to full duplex, but the Ethernet switch is
set to half-duplex, or visa versa.

• Most newer hardware will auto-negotiate this, but with
some older hardware, auto-negotiation sometimes fails
– result is a working but very slow network (typically only

1-2 Mbps)
– best for both to be in full duplex if possible, but some

older 100BT equipment only supports half-duplex

44
44

SC2000

Application Performance Issues

SC2000

Other Techniques to Achieve
High Throughput over a WAN

• Use multiple TCP sockets for the data stream
– if your receive host is fast enough

• Use a separate thread for each socket
• Keep the data pipeline full

– use asynchronous I/O
• overlap I/O and computation

– read and write large amounts of data (> 1MB) at a time
whenever possible

– pre-fetch data whenever possible
• Avoid unnecessary data copies

– manipulate pointers to data blocks instead

45
45

SC2000

Threaded Read: dpssRead()

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

Disk Storage

DPSS
Server

read
thread

read
thread

read
thread

read
thread

read buffer
(128 KB
blocks)

dpssRead(dpss_file_descriptor, char *buffer, int size) ;

use block header to
determine where to
insert block into
buffer; no memory
copy required

Client

SC2000

Use Asynchronous I/O

• I/O followed by
processing

• overlapped I/O and
processing

almost a 2:1 speedup

46
46

SC2000

Throughput vs. Latency

• Most of the techniques we have discussed are
designed to improve throughput

• Some of these might even increase latency
– with large TCP buffers, OS will buffer more data

before sending it out.
• Goal of a Grid application programmer

– hide latency
• However, there are some ways to help latency:

– use separate control and data sockets
– use TCP_NODELAY option on control socket

• But: combine control messages together into 1 larger
message whenever possible on TCP_NODELAY sockets

SC2000

Conclusions

• Tuning Grid Applications is hard!
– usually not obvious what the bottlenecks are

• Tuning TCP is hard!
– no single solution fits all situations

• need to be careful TCP buffer are not too big or too small

• sometimes parallel streams help throughput, sometimes
they hurt

47
47

SC2000

Conclusions

So what to do?
• design your grid application to be as flexible as possible

– make it easy for clients/users to set the TCP buffer
sizes

– make it possible to turn on/off parallel socket transfers
• probably off by default

• design your application for the future
– even if your current WAN connection is only 45 Mbps

(or less), some day it will be much higher, and these
issues will become even more important

SC2000

For More Information

Email:bltierney@lbl.gov

http://www-didc.lbl.gov/NetLogger/
– download NetLogger components
– tutorial
– user guide

http://www-didc.lbl.gov/tcp-wan.html
– links to all network tools mentioned here
– sample TCP buffer tuning code, etc.,

